Feature Analysis
Community Feature Analysis
LorMe provide community feature analysis including alpha diversity, beta/structure analysis and community composition analysis. All feature analysis was based on encapsulated object. (How to encapsulate)?
Alpha diversity
##data preparation####
data("Two_group") # tax summary objects with configuration
##Alpha diversirt analysis
Alpha_results<- Alpha_diversity_calculator(taxobj = Two_group,
taxlevel = "Base" #analysis level
)
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Failed (P = 0.04441989 )
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.528 )
## Treatment_Name N Median Q1 Q3
## 1 Control 8 6.608076 6.486807 6.545958
## 2 Treatment 8 6.455881 6.390880 6.450683
##
##
## ###Dependent Variable: Indexvalue ####
##
## ###Mann-Whitney Rank Sum Test####
##
## ###Statistics####
##
## Mann-Whitney U Statistic= 48
##
## n(small)= 8 , n(big)= 8
## P_estimate = 0.1035619 ,P_exact = 0.09289194
##
## ###Conclusion####
## The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.09289194 ).
## Analysis finished
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P = 0.589 )
##
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.137 )
## ###T-test begin ####
##
## ###Dependent Variable: Indexvalue ####
##
## Treatment_Name N Mean Sd SEM
## 1 Control 8 1348.875 103.6938 36.66131
## 2 Treatment 8 1231.500 152.1212 53.78296
## ###Statistics####
##
## Method: Welch Two Sample t-test (Two-tailed)
##
## data: Indexvalue
## t = 1.8033, df = 12.35, p-value = 0.09578
## alternative hypothesis: true difference in means between group Control and group Treatment is not equal to 0
## 95 percent confidence interval:
## -23.99857 258.74857
## sample estimates:
## mean in group Control mean in group Treatment
## 1348.875 1231.500
##
## ###Conclusion####
## The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.09577966 )
## Analysis finished
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P = 0.718 )
##
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.994 )
## ###T-test begin ####
##
## ###Dependent Variable: Indexvalue ####
##
## Treatment_Name N Mean Sd SEM
## 1 Control 8 0.9085666 0.01379727 0.004878073
## 2 Treatment 8 0.9075135 0.01342757 0.004747362
## ###Statistics####
##
## Method: Welch Two Sample t-test (Two-tailed)
##
## data: Indexvalue
## t = 0.15472, df = 13.99, p-value = 0.8793
## alternative hypothesis: true difference in means between group Control and group Treatment is not equal to 0
## 95 percent confidence interval:
## -0.01354710 0.01565335
## sample estimates:
## mean in group Control mean in group Treatment
## 0.9085666 0.9075135
##
## ###Conclusion####
## The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.8792553 )
## Analysis finished
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Failed (P = 0.00407253 )
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.839 )
## Treatment_Name N Median Q1 Q3
## 1 Control 8 0.9977593 0.9972547 0.9974599
## 2 Treatment 8 0.9970120 0.9967638 0.9969616
##
##
## ###Dependent Variable: Indexvalue ####
##
## ###Mann-Whitney Rank Sum Test####
##
## ###Statistics####
##
## Mann-Whitney U Statistic= 52
##
## n(small)= 8 , n(big)= 8
## P_estimate = 0.04056886 ,P_exact = 0.0356919
##
## ###Conclusion####
## The difference in the median values between the two groups is greater than would be expected by chance; there is a statistically significant difference (P = 0.0356919 ).
## Analysis finished
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P = 0.62 )
##
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.145 )
## ###T-test begin ####
##
## ###Dependent Variable: Indexvalue ####
##
## Treatment_Name N Mean Sd SEM
## 1 Control 8 1357.496 109.5964 38.74817
## 2 Treatment 8 1241.538 161.1087 56.96052
## ###Statistics####
##
## Method: Welch Two Sample t-test (Two-tailed)
##
## data: Indexvalue
## t = 1.6832, df = 12.336, p-value = 0.1174
## alternative hypothesis: true difference in means between group Control and group Treatment is not equal to 0
## 95 percent confidence interval:
## -33.68965 265.60577
## sample estimates:
## mean in group Control mean in group Treatment
## 1357.496 1241.538
##
## ###Conclusion####
## The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.1174497 )
## Analysis finished
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P = 0.577 )
##
## Equal Variance Test (Brown-Forsythe): Passed (P = 0.144 )
## ###T-test begin ####
##
## ###Dependent Variable: Indexvalue ####
##
## Treatment_Name N Mean Sd SEM
## 1 Control 8 1368.366 113.8825 40.26355
## 2 Treatment 8 1249.384 166.6579 58.92247
## ###Statistics####
##
## Method: Welch Two Sample t-test (Two-tailed)
##
## data: Indexvalue
## t = 1.6672, df = 12.367, p-value = 0.1206
## alternative hypothesis: true difference in means between group Control and group Treatment is not equal to 0
## 95 percent confidence interval:
## -35.99884 273.96411
## sample estimates:
## mean in group Control mean in group Treatment
## 1368.366 1249.384
##
## ###Conclusion####
## The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.1205737 )
## Analysis finished
## SampleID Group Rep Indexname Indexvalue
## 1 Sample1 Treatment 1 Shannon 6.555904
## 2 Sample2 Treatment 2 Shannon 6.351143
## 3 Sample3 Control 1 Shannon 6.528515
## 4 Sample4 Control 2 Shannon 6.650545
## 5 Sample5 Control 3 Shannon 6.639492
## [1] "Plotobj_Shannon" "Plotobj_Species number" "Plotobj_Simpson"
## [4] "Plotobj_Evenness" "Plotobj_Chao" "Plotobj_ACE"
Beta/Structure
##Community structure
community_structure<- structure_plot(taxobj = Two_group,
taxlevel = "Base", #Analysis level
diagram = "stick" #Style of plot
)
## Run 0 stress 0.08827856
## Run 1 stress 0.09171458
## Run 2 stress 0.09459435
## Run 3 stress 0.09216234
## Run 4 stress 0.1106779
## Run 5 stress 0.09459425
## Run 6 stress 0.0951984
## Run 7 stress 0.1078229
## Run 8 stress 0.1091765
## Run 9 stress 0.09171461
## Run 10 stress 0.09216223
## Run 11 stress 0.09327251
## Run 12 stress 0.0932725
## Run 13 stress 0.09459423
## Run 14 stress 0.09216244
## Run 15 stress 0.09327266
## Run 16 stress 0.09459422
## Run 17 stress 0.09328546
## Run 18 stress 0.1091763
## Run 19 stress 0.08984926
## Run 20 stress 0.09171461
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 20: stress ratio > sratmax
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2
## Df SumOfSqs R2 F Pr(>F)
## Group 1 0.6802 0.2045 3.5991 0.001 ***
## Residual 14 2.6460 0.7955
## Total 15 3.3263 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## PC1 PC2 SampleID Group Rep cent1 cent2
## 1 -23.580643 24.36589 Sample1 Treatment 1 -15.56312 18.49638
## 2 -13.599862 11.10910 Sample2 Treatment 2 -15.56312 18.49638
## 3 4.124383 -18.15145 Sample3 Control 1 15.56312 -18.49638
## 4 2.665482 -20.85253 Sample4 Control 2 15.56312 -18.49638
## 5 3.174064 -83.61568 Sample5 Control 3 15.56312 -18.49638
Composition
require(magrittr)
phylum10 <- community_plot(
taxobj = Two_group,
taxlevel = "Phylum", #Analysis level
n = 10, #Displaying number of top taxon, by default
rmprefix = "p__", #prefix to remove, optional
palette = "Paired" #paletter, optional
)
##extract results
phylum10$barplot # Check bar plot
## Phylum Sample1 Sample2 Sample3 Sample4
## 35 Proteobacteria 0.44405938 0.338073005 0.487765642 0.410655391
## 3 Acidobacteria 0.15564968 0.318251273 0.107018881 0.150951374
## 4 Actinobacteria 0.11966799 0.081324278 0.139615613 0.131289641
## 22 Chloroflexi 0.09245711 0.086587436 0.075988485 0.113361522
## 30 Gemmatimonadetes 0.06588799 0.037648557 0.063246126 0.062917548
## 29 Firmicutes 0.04488085 0.057767402 0.046312759 0.048287526
## 40 Verrucomicrobia 0.01446113 0.022198642 0.019558039 0.026088795
## 33 Nitrospirae 0.02173448 0.021307301 0.017737702 0.011881607
## 8 Bacteroidetes 0.01390493 0.010271647 0.012996359 0.014545455
## 14 Candidatus Latescibacteria 0.00397895 0.004414261 0.004360342 0.003551797
## Sample5 Sample6 Sample7 Sample8 Sample9 Sample10
## 35 0.37162880 0.440284601 0.462802915 0.488301248 0.385030831 0.475244176
## 3 0.16793374 0.108377096 0.114048466 0.099005712 0.182989581 0.109255423
## 4 0.10367382 0.156657632 0.149042535 0.124772583 0.097257070 0.123969388
## 22 0.11633043 0.121251906 0.096805626 0.064819124 0.129194131 0.077628853
## 30 0.06001274 0.046035914 0.047364853 0.106409985 0.050648522 0.097501163
## 29 0.06468465 0.046544130 0.041814947 0.032494182 0.047969381 0.034036616
## 40 0.04506265 0.029264781 0.025673615 0.009985191 0.034998937 0.012938142
## 33 0.01652155 0.012324242 0.012031859 0.029193992 0.020497555 0.024650121
## 8 0.01295392 0.016135863 0.017920691 0.014470066 0.012842866 0.013191831
## 14 0.00798471 0.003430459 0.002075919 0.001565475 0.004720391 0.001606697
## Sample11 Sample12 Sample13 Sample14 Sample15 Sample16
## 35 0.437069186 0.435942078 0.343949045 0.400477877 0.353111310 0.38204398
## 3 0.213896690 0.179795320 0.161473575 0.199513590 0.221598401 0.24288691
## 4 0.090460386 0.096776933 0.098424858 0.118914537 0.085236698 0.11623357
## 22 0.090332738 0.116183277 0.210965743 0.102146179 0.111182000 0.07919024
## 30 0.046464131 0.047263153 0.050955414 0.053633144 0.085321764 0.04257219
## 29 0.033656710 0.045012527 0.048287141 0.047702351 0.049083408 0.04384808
## 40 0.018934559 0.015457132 0.024832157 0.023339165 0.020798775 0.03461915
## 33 0.025827589 0.024034991 0.021690480 0.018816401 0.028709966 0.01867052
## 8 0.019019658 0.011125738 0.009812360 0.010880232 0.011186253 0.01305661
## 14 0.004340056 0.003949212 0.002539163 0.002005376 0.007400791 0.00506103
## SampleID Group Rep tax rel_abundance
## 1 Sample1 Treatment 1 Proteobacteria 0.4440594
## 2 Sample2 Treatment 2 Proteobacteria 0.3380730
## 3 Sample3 Control 1 Proteobacteria 0.4877656
## 4 Sample4 Control 2 Proteobacteria 0.4106554
## 5 Sample5 Control 3 Proteobacteria 0.3716288
## 6 Sample6 Control 4 Proteobacteria 0.4402846
## 7 Sample7 Control 5 Proteobacteria 0.4628029
## 8 Sample8 Control 6 Proteobacteria 0.4883012
## 9 Sample9 Control 7 Proteobacteria 0.3850308
## 10 Sample10 Control 8 Proteobacteria 0.4752442
## Proteobacteria Acidobacteria
## "#A6CEE3" "#2D82AF"
## Actinobacteria Chloroflexi
## "#98D277" "#6F9E4C"
## Gemmatimonadetes Firmicutes
## "#F16667" "#F06C45"
## Verrucomicrobia Nitrospirae
## "#FE982C" "#D9A295"
## Bacteroidetes Candidatus Latescibacteria
## "#7D54A5" "#F0EB99"
## Others
## "#B15928"