Getting Started with LorMe

How does LorMe get started?

LorMe provides basic functions for significance test and simple compare visualization.

data("iris")
sigtest_results<- auto_signif_test(data = iris,treatment_col = 5,value_col = 1) #You can check the report in console
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P =  0.219 )
## 
## Equal Variance Test (Brown-Forsythe):    Failed  (P =  0.002258528 )
## 
## 
##  ###Data overview#### 
## 
##   Treatment_Name  N  Mean        Sd        SEM
## 1         setosa 50 5.006 0.3524897 0.04984957
## 2     versicolor 50 5.936 0.5161711 0.07299762
## 3      virginica 50 6.588 0.6358796 0.08992695
## ###Kruskal-Wallis One Way Analysis of Variance on Ranks#### 
## H =  96.93744  with  2  degrees of freedom. P =  8.918734e-22  
## 
## The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference  (P =  8.918734e-22 ) 
## 
## ###Multiple Comparison Procedures#### 
## 
## All Pairwise Multiple Comparison Procedures (Bonferroni Method) with alpha=0.05 
## 
## ###Bonferroni adjusted LSD statistics#### 
## 
##     MSerror  Df     Mean       CV  t.value       MSD
##   0.2650082 147 5.843333 8.809859 2.421686 0.2493317
## 
## 
## ###Comparions on  Species ####
## 
##                       diff    lwr.ci    upr.ci         pval
## versicolor-setosa    0.930 0.6806683 1.1793317 2.631058e-15
## virginica-setosa     1.582 1.3326683 1.8313317 6.644464e-32
## virginica-versicolor 0.652 0.4026683 0.9013317 8.296915e-09
## 
## 
## ###Labels####
## 
##               compare Letters    type  Mean       std  n         se      LCL
## virginica   virginica       a Species 6.588 0.6358796 50 0.07280222 6.444126
## versicolor versicolor       b Species 5.936 0.5161711 50 0.07280222 5.792126
## setosa         setosa       c Species 5.006 0.3524897 50 0.07280222 4.862126
##                 UCL Min Max   Q25 Q50 Q75
## virginica  6.731874 4.9 7.9 6.225 6.5 6.9
## versicolor 6.079874 4.9 7.0 5.600 5.9 6.3
## setosa     5.149874 4.3 5.8 4.800 5.0 5.2
## Analysis finished
compare_results<- compare_plot(inputframe = iris,treat_location = 5,value_location = 1)
## ###Distribution hypothesis####
## Normality Test (Shapiro-Wilk): Passed (P =  0.219 )
## 
## Equal Variance Test (Brown-Forsythe):    Failed  (P =  0.002258528 )
## 
## 
##  ###Data overview#### 
## 
##   Treatment_Name  N  Mean        Sd        SEM
## 1         setosa 50 5.006 0.3524897 0.04984957
## 2     versicolor 50 5.936 0.5161711 0.07299762
## 3      virginica 50 6.588 0.6358796 0.08992695
## ###Kruskal-Wallis One Way Analysis of Variance on Ranks#### 
## H =  96.93744  with  2  degrees of freedom. P =  8.918734e-22  
## 
## The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference  (P =  8.918734e-22 ) 
## 
## ###Multiple Comparison Procedures#### 
## 
## All Pairwise Multiple Comparison Procedures (Bonferroni Method) with alpha=0.05 
## 
## ###Bonferroni adjusted LSD statistics#### 
## 
##     MSerror  Df     Mean       CV  t.value       MSD
##   0.2650082 147 5.843333 8.809859 2.421686 0.2493317
## 
## 
## ###Comparions on  Species ####
## 
##                       diff    lwr.ci    upr.ci         pval
## versicolor-setosa    0.930 0.6806683 1.1793317 2.631058e-15
## virginica-setosa     1.582 1.3326683 1.8313317 6.644464e-32
## virginica-versicolor 0.652 0.4026683 0.9013317 8.296915e-09
## 
## 
## ###Labels####
## 
##               compare Letters    type  Mean       std  n         se      LCL
## virginica   virginica       a Species 6.588 0.6358796 50 0.07280222 6.444126
## versicolor versicolor       b Species 5.936 0.5161711 50 0.07280222 5.792126
## setosa         setosa       c Species 5.006 0.3524897 50 0.07280222 4.862126
##                 UCL Min Max   Q25 Q50 Q75
## virginica  6.731874 4.9 7.9 6.225 6.5 6.9
## versicolor 6.079874 4.9 7.0 5.600 5.9 6.3
## setosa     5.149874 4.3 5.8 4.800 5.0 5.2
## Analysis finished
## Check three types of comparsion plot
compare_results$Barplot

compare_results$Boxplot

compare_results$Violinplot

To begin microbial profile analysis, LorMe starts with encapsulation

Data preparation

# Load the example dataset
data(testotu) # Load the standard Qiime output feature table
head(testotu) # First column -ID, last column -taxonomic annotation, others - the feature table.
##   OTU.ID  X1  X2  X3 X4 X5 X6  X7  X8  X9 X10 X11 X12 X13 X14 X15 X16 X17 X18
## 1   OTU1 202 146 120 48 30 49   9  14  13  11   9   9  52  47  36  51  55  83
## 2   OTU2   0   2   0 14  7  5 135 190 143 149  73 107  11  34  34 165 176 448
## 3   OTU3  89 100 103 47 45 27 150 188 131 285 358 369   9  12  12  40  34  47
## 4   OTU4   0   0   0  3  2  0   3   1   2   3   2   2   0   1   0   0   0   0
## 5   OTU5  15  47  12  9  2  9  46  73  54 115  92 109  12   7   4  13  15  12
## 6   OTU6   2   3   3  0  0  1   2   3   2   6   5  11   1   0   0   4   2   1
##   X19 X20
## 1 535 309
## 2  18  25
## 3  52  57
## 4   1   5
## 5  29  39
## 6   0   2
##                                                                                                                                                   taxonomy
## 1 d__Bacteria; p__Gemmatimonadota; c__Gemmatimonadetes; o__Gemmatimonadales; f__Gemmatimonadaceae; g__uncultured; s__uncultured Gemmatimonadetes bacterium
## 2                         d__Bacteria; p__Armatimonadota; c__Fimbriimonadia; o__Fimbriimonadales; f__Fimbriimonadaceae; g__norank; s__uncultured bacterium
## 3                                   d__Bacteria; p__Actinobacteriota; c__Thermoleophilia; o__Gaiellales; f__uncultured; g__norank; s__uncultured bacterium
## 4                                           d__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Micavibrionales; f__Micavibrionaceae; g__Micavibrio
## 5                                    d__Bacteria; p__Gemmatimonadota; c__S0134 terrestrial group; o__norank; f__norank; g__norank; s__uncultured bacterium
## 6                                                               d__Bacteria; p__Chloroflexi; c__Chloroflexia; o__Thermomicrobiales; f__AKYG1722; g__norank
feature_table<- testotu[, -c(1,22)]
tax_anno<- testotu[, c(1,22)]

# Create metadata
  groupinformation <- data.frame(
  group = c(rep("a", 10), rep("b", 10)), # Group column, required for sample grouping
  factor1 = rnorm(10), # An optional phenotype or environmental factor
  factor2 = rnorm(mean = 100, 10), # Another optional phenotype or environmental factor
  subject = factor(c(1:10, 1:10)), # Replication column, required to indicate replicates
  group2 = c(rep("e", 5), rep("f", 5), rep("e", 5), rep("f", 5)) # An optional secondary grouping variable
)
  head(groupinformation) #metadata
##   group    factor1   factor2 subject group2
## 1     a  0.2700705 100.17254       1      e
## 2     a -0.2773064 100.95765       2      e
## 3     a -0.5660237  98.63731       3      e
## 4     a -1.8786583 100.06834       4      e
## 5     a -1.2667911 100.10066       5      e
## 6     a -0.9677497 100.90134       6      f

Encapsulation

This step encapsulate meta file, feature table, taxonomic information

 # simple mode ###
  test_object <- tax_summary(
  groupfile = groupinformation, # Metadata file, required 
  inputtable = feature_table, # Feature table, required
  taxonomytable = tax_anno # Taxonomy annotation , required
)
 ### complete mode ###
  test_object <- tax_summary(
  groupfile = groupinformation, 
  inputtable = feature_table, 
  taxonomytable = tax_anno, 
  reads = TRUE, # If feature table is in reads, by default
  into = "standard", # standard annotation, by default
  sep = ";", # Separator, by default
  outputtax = c("Phylum", "Genus") # Output level, by default
)

Configuration Preferences

Aesthetics colors , Group displaying order are optional for configuration LorMe provide built-in color schemes, see in color_scheme These configuration are not required, but recommended to be set for consistent style.

#These are optional parameters to configure
my_col=color_scheme("Plan1") #same length as Group
## Color scheme generated, see in your plot interface

my_order=c("b","a")
my_facet_order=c("e","f")

Configuration

### simple mode ###
  test_object_plan1 <- object_config(
    taxobj = test_object, #tax summary object, required
    treat_location = 1, #which column is Group information, required
    rep_location = 4 #which column is replication information, required
  )

### complete mode ###
 test_object_plan1 <- object_config(
    taxobj = test_object,
    treat_location = 1,
    rep_location = 4,
    treat_col = my_col, #color assign, optional
    treat_order = my_order #Group order, optional
  )

### Facet configuration ###
  test_object_plan2 <- object_config(
    taxobj = test_object,
    treat_location = 1,
    rep_location = 4,
    facet_location = 5, #which column is second Group information, optional
    subject_location = NULL, #which column is paired subject information, optional
    treat_col = my_col,
    treat_order = my_order,
    facet_order = my_facet_order #facet order, optional
  )

Finished

To this,we have finished the configuration and can finally enjoy one-code analysis!!!!

Go Analysis